Biological soil crusts are more prevalent in warmer and drier environments within the Great Basin ecoregion: implications for managing annual grass invasion

Author:

Condon Lea A.1ORCID,Bradford John B.2,Coates Peter S.3ORCID

Affiliation:

1. Western Ecological Research Center U.S. Geological Survey Reno Field Station, 1100 Valley Road Reno NV 89512 U.S.A.

2. Southwest Biological Science Center U.S. Geological Survey 2255 N. Gemini Drive Flagstaff AZ 86001 U.S.A.

3. Western Ecological Research Center U.S. Geological Survey Dixon Field Station, 800 Business Park Road Dixon CA 95620 U.S.A.

Abstract

Biological soil crusts (biocrusts) can thrive under environmental conditions that are stressful for vascular plants such as high temperatures and/or extremely low moisture availability. In these settings, and in the absence of disturbance, cover of biocrusts commonly exceeds cover of vascular plants. Arid landscapes are also typically slow to recover from disturbance and prone to altered vegetation and invasion by exotic species. In the sagebrush ecosystems, cover of annual, exotic, invasive grasses are lower where cover of biocrusts and vascular plants are greater, suggesting that biocrusts play a role in helping arid sites avoid conversion to dominance by invasive grasses. The conceptual framework for assessing ecological resistance and resilience (R&R) is used across the region to estimate the risk of invasion by annual grasses and the likelihood of recovery of native plants following disturbance. However, this framework does not currently account for biocrusts. We used data collected by the Bureau of Land Management Assessment, Inventory, and Monitoring program to relate biocrusts, specifically the presence of lichens and mosses, to the R&R framework. Lichens frequently occur on warm, dry sites, classified as lower R&R. Mosses frequently occur on sites classified as moderate or moderately low R&R. Without management practices that favor biocrusts in low‐moderate R&R, these areas may be more vulnerable to transitioning from being dominated by shrubs to annual grasses. Under climate change scenarios, the area occupied by lower R&R sites is likely to increase, suggesting that the role of biocrusts in maintaining site resistance to invasion may also increase.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3