Increased biocrust cover and activity in the highlands of Iceland after five growing seasons of experimental warming

Author:

Salazar AlejandroORCID,Gunnlaugsdóttir Eyrún,Jónsdóttir Ingibjörg,Klupar Ian,Wandji Ruth-Phoebe,Arnalds Ólafur,Andrésson Ólafur

Abstract

Abstract

Aims One of the most important questions of our time is how ecosystems will be transformed by climate change. Here, we used a five-year field experiment to investigate the effects of climate warming on the cover and function of a sub-Arctic alpine ecosystem in the highlands of Iceland dominated by biocrust, mosses and vascular plants.Methods We used Open Top Chambers (OTCs) to simulate warming; standard surface and NDVI analyses to measure plant cover and function; gas analyzers to monitor biocrust respiration; and the Tea Bag Index approach to estimate mass loss, decomposition and soil carbon stabilization rates.Results Contrary to our initial hypothesis of warming accelerating an ecological succession of plants growing on biocrust, we observed a warming-induced decreased abundance of vascular plants and mosses —possibly caused by high temperature summer peaks that resemble heat waves— and an increase in the cover of biocrust. The functional responses of biocrust to warming, including increased litter mass loss and respiration rates and a lower soil carbon stabilization rates, may suggest climate-driven depletion of soil nutrients in the future.Conclusion It remains to be studied how the effects of warming on biocrusts from high northern regions could interact with other drivers of ecosystem change, such as grazing; and if in the long-term global change could favor the growth of vascular plants on biocrust in the highlands of Iceland and similar ecosystems. For the moment, our experiment points to a warming-induced increase in the cover and activity of biocrust.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3