Wing buzzing as a mechanism for generating vibrational signals in psyllids (Hemiptera: Psylloidea)

Author:

Polajnar Jernej1ORCID,Kvinikadze Elizaveta2,Harley Adam W.3,Malenovský Igor2ORCID

Affiliation:

1. Department of Organisms and Ecosystems Research National Institute of Biology Ljubljana Slovenia

2. Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic

3. Computer Science Department Stanford University Stanford California USA

Abstract

AbstractPsyllids, or jumping plant lice (Hemiptera: Sternorrhyncha: Psylloidea), are a group of small phytophagous insects that include some important pests of crops worldwide. Sexual communication of psyllids occurs via vibrations transmitted through host plants, which play an important role in mate recognition and localization. The signals are species‐specific and can be used to aid in psyllid taxonomy and pest control. Several hypotheses have been proposed for the mechanism that generates these vibrations, of which stridulation, that is, friction between parts of the forewing and thorax, has received the most attention. We have investigated vibrational communication in the European pear psyllid species Cacopsylla pyrisuga (Foerster, 1848) using laser vibrometry and high‐speed video recording, to directly observe the movements associated with signal production. We describe for the first time the basic characteristics of the signals and signal emission of this species. Based on observations and analysis of the video recordings using a point‐tracking algorithm, and their comparison with laser vibrometer recordings, we argue that males of C. pyrisuga produce the vibrations primarily by wing buzzing, that is, tremulation that does not involve friction between the wings and thorax. Comparing observed signal properties with previously published data, we predict that wing buzzing is the main mechanism of signal production in all vibrating psyllids.

Publisher

Wiley

Subject

Insect Science,General Biochemistry, Genetics and Molecular Biology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3