Metabolic changes during larval–pupal metamorphosis of Helicoverpa armigera

Author:

Gao Xinxin12,Zhang Jihong1ORCID,Qin Qilian1,Wu Peipei12,Zhang Huan1ORCID,Meng Qian1ORCID

Affiliation:

1. State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractEnergy metabolism is essential for insect metamorphosis. The accumulation and utilization of energy is still not completely clear during larval–pupal metamorphosis of holometabolous insects. We used metabolome and transcriptome analysis to reveal key metabolic changes in the fat body and plasma and the underlying metabolic regulation mechanism of Helicoverpa armigera, an important global agricultural insect pest, during larval–pupal metamorphosis. During the feeding stage, activation of aerobic glycolysis provided intermediate metabolites and energy for cell proliferation and lipid synthesis. During the non‐feeding stages (the initiation of the wandering stage and the prepupal stage), aerobic glycolysis was suppressed, while, triglyceride degradation was activated in the fat body. The blocking of metabolic pathways in the fat body was probably caused by 20‐hydroxyecdysone‐induced cell apoptosis. 20‐hydroxyecdysone cooperated with carnitine to promote the degradation of triglycerides and the accumulation of acylcarnitines in the hemolymph, allowing rapid transportation and supply of lipids from the fat body to other organs, which provided a valuable reference for revealing the metabolic regulation mechanism of lepidopteran larvae during the last instar. Carnitine and acylcarnitines are first reported to be key factors that mediate the degradation and utilization of lipids during larval–pupal metamorphosis of lepidopteran insects.

Publisher

Wiley

Subject

Insect Science,General Biochemistry, Genetics and Molecular Biology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3