Affiliation:
1. Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
2. College of Plant Protection Hebei Agricultural University Baoding Hebei Province China
3. Key Laboratory of Natural Enemies Insects Ministry of Agriculture and Rural Affairs Beijing China
Abstract
AbstractMicrobial communities, derived from food, ambient, and inner, can affect host ecological adaption and evolution. Comparing with most phytophagous arthropods, predators may have more opportunities to develop specific microbiota depending on the level of prey specialization. To explore how diet sources affect host microbial communities and vary across predator species, we considered 3 types of predators from Phytoseiidae (Acari: Mesostigmata): polyphagous (Amblyseius orientalis Ehara, Neoseiulus barkeri Hughes, and Amblyseius swirskii Athias‐Henrio), oligophagous (Neoseiulus californicus McGregor), and monophagous (Phytoseiulus persimilis Athias‐Henriot) predatory mites. The polyphagous species were fed on 2 types of diets, natural prey and alternative prey. By using 16S rRNA sequencing, we found that diet was the main source of microbiota in predatory mites, while there was no clear pattern affected by prey specialization. Among 3 polyphagous predators, host species had a larger impact than prey on microbial composition. Unlike A. orientalis or N. barkeri which showed consistency in their microbiota, prey switching significantly affected β‐diversity of bacterial composition in A. swirskii, with 56% of the microbial alteration. In short, our results confirmed the substantial influence of diet on host microbial construction in predatory species, and highlighted species differences in shaping the microbiota which are not necessarily related to prey specialization.
Funder
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
Subject
Insect Science,General Biochemistry, Genetics and Molecular Biology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics