Habitat suitability models reveal the spatial signal of environmental DNA in riverine networks

Author:

Brantschen Jeanine12ORCID,Fopp Fabian34ORCID,Adde Antoine15ORCID,Keck François12ORCID,Guisan Antoine56ORCID,Pellissier Loïc34ORCID,Altermatt Florian12ORCID

Affiliation:

1. Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland

2. Department of Evolutionary Biology and Environmental Studies, Faculty of Science, University of Zurich Zurich Switzerland

3. Department of Environmental Systems Science, Federal Institute of Technology Zurich Switzerland

4. Department of Landscape Dynamics & Ecology, WSL, Swiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland

5. Institute for Earth Science Dynamics, Faculty of Geosciences and Environment, University of Lausanne Switzerland

6. Department of Ecology & Evolution, Faculty of Biology & Medicine, University of Lausanne Switzerland

Abstract

The rapid loss of biodiversity in freshwater systems asks for a robust and spatially explicit understanding of species' occurrences. As two complementing approaches, habitat suitability models provide information about species' potential occurrence, while environmental DNA (eDNA) based assessments provide indication of species' actual occurrence. Individually, both approaches are used in ecological studies to characterize biodiversity, yet they are rarely combined. Here, we integrated high‐resolution habitat suitability models with eDNA‐based assessments of aquatic invertebrates in riverine networks to understand their individual and combined capacity to inform on species' occurrence. We used eDNA sampling data from 172 river sites and combined the detection of taxa from three insect orders (Ephemeroptera, Plecoptera, Trichoptera; hereafter EPT) with suitable habitat predictions at a subcatchment level (2 km2). Overall, we find congruence of habitat suitability and eDNA‐based detections. Yet, the models predicted suitable habitats beyond the number of detections by eDNA sampling, congruent with the suitable niche being larger than the realized niche. For local mismatches, where eDNA detected a species but the habitat was not predicted suitable, we calculated the minimal distance to upstream suitable habitat patches, indicating possible sources of eDNA signals from upstream sites subsequently being transported along the water flow. We estimated a median distance of 1.06 km (range 0.2–42 km) of DNA transport based on upstream habitat suitability, and this distance was significantly smaller than expected by null model predictions. This estimated transport distance is in the range of previously reported values and allows extrapolations of transport distances across many taxa and riverine systems. Together, the combination of eDNA and habitat suitability models allows larger scale and spatially integrative inferences about biodiversity, ultimately needed for the management and protection of biodiversity.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3