Predictive mapping of tree species assemblages in an African montane rainforest

Author:

Babaasa Dennis12ORCID,Finn John T.2,Schweik Charles M.2ORCID,Fuller Todd K.2ORCID,Sheil Douglas3ORCID

Affiliation:

1. Institute of Tropical Forest Conservation, Mbarara University of Science and Technology Kabale Uganda

2. Department of Environmental Conservation University of Massachusetts Amherst Massachusetts USA

3. Forest Ecology and Forest Management Group Wageningen University and Research Wageningen The Netherlands

Abstract

AbstractConservation of mountain ecosystems can benefit from knowledge of habitats and their distribution patterns. This benefit is particularly true for diverse ecosystems with high conservation values such as the “Afromontane” rainforests. We mapped the vegetation of one such forest: the rugged Bwindi Impenetrable Forest, Uganda—a World Heritage Site known for its many restricted‐range plants and animal taxa including several iconic species. Given variation in elevation, terrain and human impacts across Bwindi, we hypothesized that these factors influence the composition and distribution of tree species. To test this, detailed surveys were carried out using stratified random sampling. We established 289 georeferenced sample sites (each with 15 trees ≥20 cm dbh) ranging from 1320 to 2467 m a.s.l. and measured 4335 trees comprising 89 species that occurred in four or more sample sites. These data were analyzed against 21 digitally mapped biophysical variables using various analytical techniques including nonmetric multidimensional scaling (NMDS) and random forests. We identified six tree species assemblages with distinct compositions. Among the biophysical variables, elevation had the strongest correlation with the ordination (r2 = 0.5; p < 0.001). The “out‐of‐bag” (OOB) estimate of the error rate for the best final model was 50.7% meaning that nearly half of the variation was accounted for using a limited set of variables. We demonstrate that it is possible to predict the spatial pattern of such a forest based on sampling across a highly complex landscape. Such methods offer accurate mapping of composition that can guide conservation.

Funder

International Foundation for Science

British Ecological Society

University of Massachusetts Amherst

Mohammed bin Zayed Species Conservation Fund

Wildlife Conservation Society

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3