Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803

Author:

Ortega‐Martínez Pablo12ORCID,Nikkanen Lauri3ORCID,Wey Laura T.3ORCID,Florencio Francisco J.12ORCID,Allahverdiyeva Yagut3ORCID,Díaz‐Troya Sandra12ORCID

Affiliation:

1. Instituto de Bioquímica Vegetal y Fotosíntesis Universidad de Sevilla, Consejo Superior de Investigaciones Científicas Américo Vespucio 49 Sevilla 41092 Spain

2. Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología Universidad de Sevilla, Profesor García González s/n Sevilla 41012 Spain

3. Molecular Plant Biology, Department of Life Technologies University of Turku Turku FI‐20014 Finland

Abstract

Summary Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP‐glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild‐type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin–Benson–Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy‐based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.

Funder

Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía

European Molecular Biology Organization

Novo Nordisk Fonden

Ministerio de Universidades

Ministerio de Ciencia, Innovación y Universidades

NordForsk

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3