Affiliation:
1. Inst. for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Univ. Oldenburg Wilhelmshaven Germany
2. Centre for Coastal Research, Univ. of Agder Kristiansand Norway
3. Norwegian Inst. for Water Research (NIVA) Oslo Norway
4. Helmholtz Inst. for Functional Marine Biodiversity (HIFMB), Univ. Oldenburg Oldenburg Germany
5. Alfred Wegener Inst., Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
Abstract
The availability of underwater light, as primary energy source for all aquatic photoautotrophs, is (and will further be) altered by changing precipitation, water turbidity, mixing depth, and terrestrial input of chromophoric dissolved organic matter (CDOM). While experimental manipulations of CDOM input and turbidity are frequent, they often involve multiple interdependent changes (light, nutrients, C‐supply). To create a baseline for the expected effects of light reduction alone, we performed a weighted meta‐analysis on 240 published experiments (from 108 studies yielding 2500 effect sizes) that directly reduced light availability and measured marine autotroph responses. Across all organisms, habitats, and response variables, reduced light led to an average 23% reduction in biomass‐related performance, whereas the effect sizes on physiological performance did not significantly differ from zero. Especially, pigment content increased with reduced light, which indicated a strong physiological plasticity in response to diminished light. This acclimation potential was also indicated by light reduction effects minimized if the experiments lasted longer. Nevertheless, the performance (especially biomass accrual) was reduced the more the less light intensity remained available. Light reduction effects were also more negative at higher temperatures if ambient light conditions were poor. Macrophytes or benthic systems were more negatively affected by light reduction than microalgae or plankton systems, especially in physiological responses were microalgae and plankton showed slightly positive responses. Otherwise, the effect magnitudes remained surprisingly consistent across habitats and aspects of experimental design. Therefore, the strong observed log–linear relationship between remaining light and autotrophic performance can be used as a baseline to predict marine primary production in future light climate.
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献