Cultivation of RPMI 2650 cells as an in-vitro model for human transmucosal nasal drug absorption studies: optimization of selected culture conditions

Author:

Reichl Stephan1,Becker Karin1

Affiliation:

1. Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany

Abstract

Abstract Objectives The kinetics of drug absorption for nasally administered drugs are often studied using excised mucosal tissue. To avoid the disadvantages of animal experiments, cellular in-vitro models have been established. This study describes the optimization of culture conditions for a model based on the RPMI 2650 cell line, and an evaluation of this model's value for drug absorption studies. Methods The cells were cultured in two serum-free media, serum-reduced variants or minimum essential medium (MEM) containing 5–20% serum. Cell seeding efficiency and proliferation behavior were evaluated in addition to viability and attachment following cryopreservation and thawing. Cells were cultured on different filter inserts for varying cultivation times. The epithelial barrier properties were determined by measuring transepithelial electrical resistance (TEER). Permeability was assessed using marker substances. Key findings Serum supplementation of medium was necessary for cultivation, whereas the serum concentration showed little impact on proliferation and attachment following cryopreservation. A pronounced dependence of TEER on medium and filter material was observed. An optimized model cultured with MEM containing 10% serum on polyethylene terephthalate exhibited permeability that was similar to excised nasal mucosa. Conclusions These data indicate that this model could be an appropriate alternative to excised mucosa for the in-vitro evaluation of nasal drug absorption.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3