Using Rapid Prototyping to Develop a Cell-Based Platform with Electrical Impedance Sensor Membranes for In Vitro RPMI2650 Nasal Nanotoxicology Monitoring

Author:

Vasconez Martinez Mateo Gabriel1ORCID,Reihs Eva I.12,Stuetz Helene M.1,Hafner Astrid1,Brandauer Konstanze1ORCID,Selinger Florian1ORCID,Schuller Patrick1ORCID,Bastus Neus3ORCID,Puntes Victor3,Frank Johannes4,Tomischko Wolfgang4,Frauenlob Martin1,Ertl Peter14,Resch Christian5,Bauer Gerald56,Povoden Guenter6789,Rothbauer Mario12ORCID

Affiliation:

1. Institute of Applied Synthetic Chemistry, Faculty of Technical Chemistry, Technische Universitaet Wien, Getreidemarkt 9/163, 1060 Vienna, Austria

2. Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-22, 1090 Vienna, Austria

3. Catalan Institute of Nanotechnology, UAB Campus, 08193 Barcelona, Spain

4. Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria

5. Science, Research, and Development Division, Austrian Federal Ministry of Defence, 1090 Vienna, Austria

6. CBRN-Defence-Centre, Austrian Armed Forces, 2100 Korneuburg, Austria

7. Institute of Inorganic Chemistry, University of Technology, Stremayrgasse 9/IV, 8010 Graz, Austria

8. Department for Legal Philosophy, Law of Religion and Culture, University Vienna, Freyung 6, 1010 Vienna, Austria

9. Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), IFA Building 1, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria

Abstract

Due to advances in additive manufacturing and prototyping, affordable and rapid microfluidic sensor-integrated assays can be fabricated using additive manufacturing, xurography and electrode shadow masking to create versatile platform technologies aimed toward qualitative assessment of acute cytotoxic or cytolytic events using stand-alone biochip platforms in the context of environmental risk assessment. In the current study, we established a nasal mucosa biosensing platform using RPMI2650 mucosa cells inside a membrane-integrated impedance-sensing biochip using exclusively rapid prototyping technologies. In a final proof-of-concept, we applied this biosensing platform to create human cell models of nasal mucosa for monitoring the acute cytotoxic effect of zinc oxide reference nanoparticles. Our data generated with the biochip platform successfully monitored the acute toxicity and cytolytic activity of 6 mM zinc oxide nanoparticles, which was non-invasively monitored as a negative impedance slope on nasal epithelial models, demonstrating the feasibility of rapid prototyping technologies such as additive manufacturing and xurography for cell-based platform development.

Funder

Austrian Ministry of Defense

University Library of the Vienna University of Technology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3