Enantioselective drug–protein interaction between mexiletine and plasma protein

Author:

Yu Lushan1,Hong Yanjun1,Li Li1,Jin Yingxiu1,Zheng Mingyue2,Jiang Hualiang2,Zeng Su1

Affiliation:

1. Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China

2. Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China

Abstract

Abstract Objectives This study examined the interaction of mexiletine enantiomers with human plasma, human serum albumin (HSA), and human α1-acid glycoprotein (hAGP), and characterized the binding modes of mexiletine enantiomers with hAGP in the molecular level. Methods Enantiomer separation of mexiletine was performed using precolumn derivatization chiral HPLC. The ultrafiltration technique was used to separate the free mexiletine in plasma matrix. Molecular dynamics simulations and free energy calculations were assessed using molecular mechanics and the generalized Born surface area method. Key findings Significant differences in enantioselective binding to human plasma were observed (R > S). The hAGP–mexiletine binding profile exhibited similar enantioselectivity (R > S) to that in human plasma, whereas HSA–mexiletine interaction was S > R at pH 7.4. Moreover, the results of comparative studies indicated that mexiletine had the highest binding affinity for F1-S, a variant of hAGP. Based on the computational studies, residues such as Arg90, Leu79, Ser89 and Phe89 showed an energy difference of more than −0.35 kcal/mol between the enantiomers. Conclusions hAGP may be one of the key proteins leading to the enantioselective protein bindings of mexiletine in human plasma (R > S). The residues Arg90, Leu79, Ser89 and Phe89 of hAGP may have important roles in the observed enantioselectivity.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3