Physicochemical characterization of the human nail: solvent effects on the permeation of homologous alcohols

Author:

Walters Kenneth A1,Flynn Gordon L1,Marvel John R21

Affiliation:

1. College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109

2. Dermatological Division, Ortho Pharmaceutical Corporation, Raritan, New Jersey, USA

Abstract

Abstract To assess how vehicles might influence permeation through human nail, the diffusion of homologous alcohols (methanol to decanol) administered as neat liquids through finger nail plate has been studied using in-vitro diffusion cell methods and compared with permeation data for the same compounds in aqueous media. Permeation rates of the homologous alcohols through lipid depleted nail plate have also been assessed and the influences of dimethylsulphoxide (DMSO) and isopropyl alcohol on permeation rates of methanol and hexanol have been examined. With the exception of methanol, permeability coefficients are uniformly about five-fold smaller when the alcohols are undiluted than when they are applied in water. Overall parallelism in the permeability profiles under these separate circumstances of application is an indication that the external concentrations of the alcohols themselves are a determinant of their permeation velocities through the nail plate matrix. The even separation of the profiles suggests a facilitating role of water within the nail matrix. Chloroform/methanol delipidization of the nail led to increased penetration rates of water, methanol, ethanol and butanol. On the other hand, it caused a six-fold decrease in the permeation rate of decanol. Application of methanol and hexanol in DMSO somewhat retards their rates of permeation. Isopropyl alcohol also slows the permeation rate of hexanol but has little influence on that of methanol. Thus it appears that solvents which tend to promote diffusion through the skin horny layer have little promise as accelerants of nail plate permeability.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3