Increased chemotaxis and activity of circulatory myeloid progenitor cells may contribute to enhanced osteoclastogenesis and bone loss in the C57BL/6 mouse model of collagen-induced arthritis

Author:

Ikić Matijašević M12,Flegar D12,Kovačić N23,Katavić V23,Kelava T12,Šućur A12,Ivčević S12,Cvija H12,Lazić Mosler E23,Kalajzić I4,Marušić A5,Grčević D12ORCID

Affiliation:

1. Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia

2. Laboratory for Molecular Immunology, Croatian Institute of Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia

3. Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia

4. Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA

5. Department of Research in Biomedicine and Health, University of Split School of Medicine, Split, Croatia

Abstract

Summary Our study aimed to determine the functional activity of different osteoclast progenitor (OCP) subpopulations and signals important for their migration to bone lesions, causing local and systemic bone resorption during the course of collagen-induced arthritis in C57BL/6 mice. Arthritis was induced with chicken type II collagen (CII), and assessed by clinical scoring and detection of anti-CII antibodies. We observed decreased trabecular bone volume of axial and appendicular skeleton by histomorphometry and micro-computed tomography as well as decreased bone formation and increased bone resorption rate in arthritic mice in vivo. In the affected joints, bone loss was accompanied with severe osteitis and bone marrow hypercellularity, coinciding with the areas of active osteoclasts and bone erosions. Flow cytometry analysis showed increased frequency of putative OCP cells (CD3–B220–NK1.1–CD11b–/loCD117+CD115+ for bone marrow and CD3–B220–NK1.1–CD11b+CD115+Gr-1+ for peripheral haematopoietic tissues), which exhibited enhanced differentiation potential in vitro. Moreover, the total CD11b+ population was expanded in arthritic mice as well as CD11b+F4/80+ macrophage, CD11b+NK1.1+ natural killer cell and CD11b+CD11c+ myeloid dendritic cell populations in both bone marrow and peripheral blood. In addition, arthritic mice had increased expression of tumour necrosis factor-α, interleukin-6, CC chemokine ligand-2 (Ccl2) and Ccl5, with increased migration and differentiation of circulatory OCPs in response to CCL2 and, particularly, CCL5 signals. Our study characterized the frequency and functional properties of OCPs under inflammatory conditions associated with arthritis, which may help to clarify crucial molecular signals provided by immune cells to mediate systemically enhanced osteoresorption.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3