Decomposing dark diversity affinities of species and sites using Bayesian method: What accounts for absences of species at suitable sites?

Author:

Fujinuma Junichi1ORCID,Pärtel Meelis1ORCID

Affiliation:

1. Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia

Abstract

Abstract Locally observed biodiversity always consists of only a fraction of its site‐specific species pool. Why some suitable species are absent, shaping dark diversity of that site, is a basic yet increasingly crucial question in the face of global biodiversity degradation. The ultimate processes underlying dark diversity associate with either dispersal or persistence limitations, or both. These two limitations in turn link to several characteristics of individual species and sites, making it challenging to detect the exact factors contributing to dark diversity in a particular metacommunity. Here, we propose a metric, dark diversity affinity (DDA), which measures the tendencies of individual species to be absent from suitable sites and of individual sites to miss suitable species. We developed a Bayesian model interrelating four types of datasets: metacommunity matrix of species presences in sites, species‐sites suitability matrix, species functional traits and site characteristics. In the model, DDA operates as an adjustment bridging the disparity between site‐specific suitability and observed presence/absence of each species at each site. Furthermore, DDA can be related to individual properties of species and sites through logistic regression sub‐models. We demonstrated our framework using nine empirical datasets of vertebrate, invertebrate and vascular plant metacommunities. We show the decomposed roles of species traits and site characteristics in defining DDA and, therefore, dark diversity in metacommunities. In the empirical datasets, various functional traits, which related to morphology, reproduction, dispersal ability, population attributes, resource specificity and life history, significantly affected species‐level DDA, while site characteristics regarding habitat types and attributes, resource availability, pollution, and edaphic and water conditions influenced DDA at the site level. Our framework provides a concept and methodological toolbox that allows identification of the processes underlying dark diversity and advances both the theory of community ecology and biodiversity conservation. Conservation actions can be more successful by knowing whether species loss in a particular metacommunity is associated to some species traits or site characteristics and what their relative contributions are.

Funder

Eesti Teadusagentuur

European Regional Development Fund

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3