A fast method for fitting integrated species distribution models

Author:

Dovers Elliot1ORCID,Popovic Gordana C.1ORCID,Warton David I.1ORCID

Affiliation:

1. School of Mathematics and Statistics and Evolution & Ecology Research Centre UNSW Sydney Sydney New South Wales Australia

Abstract

Abstract Integrated distribution models (IDMs) predict where species might occur using data from multiple sources, a technique thought to be especially useful when data from any individual source are scarce. Recent advances allow us to fit such models with latent terms to account for dependence within and between data sources, but they are computationally challenging to fit. We propose a fast new methodology for fitting integrated distribution models using presence/absence and presence‐only data, via a spatial random effects approach combined with automatic differentiation. We have written an R package (called scampr) for straightforward implementation of our approach. We use simulation to demonstrate that our approach has comparable performance to INLA—a common framework for fitting IDMs—but with computation times up to an order of magnitude faster. We also use simulation to look at when IDMs can be expected to outperform models fitted to a single data source, and find that the amount of benefit gained from using an IDM is a function of the relative amount of additional information available from incorporating a second data source into the model. We apply our method to predict 29 plant species in NSW, Australia, and find particular benefit in predictive performance when data from a single source are scarce and when compared to models for presence‐only data. Our faster methods of fitting IDMs make it feasible to more deeply explore the model space (e.g. comparing different ways to model latent terms), and in future work, to consider extensions to more complex models, for example the multi‐species setting.

Funder

Australian Research Council

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3