Making virtual species less virtual by reverse engineering of spatiotemporal ecological models

Author:

Malinowska Katarzyna1ORCID,Markowska Katarzyna1ORCID,Kuczyński Lechosław1ORCID

Affiliation:

1. Population Ecology Lab, Faculty of Biology Adam Mickiewicz University Poznań Poland

Abstract

AbstractThe virtual species (VS) and virtual ecologist (VE) approaches are useful tools that allow testing different methodological aspects of species distribution modelling. However, methods used to generate VS so far lack solutions that can ensure a high degree of biological realism, taking into account spatial and temporal variability of population densities.We have developed a method for generating dynamic VS that can reconstruct their living prototypes in a realistic way. The framework consists of fitting a spatiotemporal model to real abundance data, generating a VS population from that model over the entire study area and spanning the whole study period, calibrating the VS, and obtaining the VE data by sampling from the VS. The effectiveness of the developed approach has been illustrated by data from large‐scale and long‐term bird abundance monitoring, using the whinchatSaxicola rubetraas a study system. We evaluated how well the spatiotemporal model can reconstruct the ‘true’ system by comparing response curves and population trends between those used to generate the VS (i.e. what constitutes the ‘truth’) and those estimated from the replicated instances of VE data. In addition, we performed a sensitivity analysis to test how the varying sampling effort affects the accuracy of trend estimation.The synthetic VE data thoroughly reconstructed the real monitoring data. Response curves from generalized additive mixed models (GAMMs), fitted to these two types of data, showed high concordance, as indicated by the 95% confidence intervals of coverage probability of 87.7%–99.8% (mean 96.9%). The population trend estimated from the VE data accurately reconstructed the ‘true’ trend calculated from VS (coverage probability: 82.3%).The proposed method for generating VS and VE data by reverse engineering of the spatiotemporal ecological model reproduces well the properties of the original system, substantially increasing the ecological realism of simulation results. The method may have further applications in evaluating various modelling techniques used to study species range dynamics, where real‐world properties are of particular importance, like conservation and invasion biology or climate change impact assessment.

Funder

Narodowe Centrum Nauki

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3