How to measure response diversity

Author:

Ross Samuel R. P.‐J.1ORCID,Petchey Owen L.2ORCID,Sasaki Takehiro3ORCID,Armitage David W.1ORCID

Affiliation:

1. Integrative Community Ecology Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Japan

2. Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland

3. Graduate School of Environment and Information Sciences Yokohama National University Yokohama Japan

Abstract

Abstract The insurance effect of biodiversity—that diversity stabilises aggregate ecosystem properties—is mechanistically underlain by inter‐ and intraspecific trait variation in organismal responses to the environment. This variation, termed response diversity, is therefore a potentially critical determinant of ecological stability. However, response diversity has yet to be widely quantified, possibly due to difficulties in its measurement. Even when it has been measured, approaches have varied. Here, we review methods for measuring response diversity and from them distil a methodological framework for quantifying response diversity from experimental and/or observational data, which can be practically applied in laboratory and field settings across a range of taxa. Previous empirical studies on response diversity most commonly invoke response traits as proxies aimed at capturing species' ecological responses to the environment. Our approach, which is based on environment‐dependent ecological responses to any biotic or abiotic environmental variable, is conceptually simple and robust to any form of environmental response, including nonlinear responses. Given its derivation from empirical data on species' ecological responses, this approach should more directly reflect response diversity than the trait‐based approach dominant in the literature. By capturing even subtle inter‐ or intraspecific variation in environmental responses, and environment dependencies in response diversity, we hope this framework will motivate tests of the diversity–stability relationship from a new perspective, and provide an approach for mapping, monitoring and conserving this critical dimension of biodiversity.

Funder

Japan Society for the Promotion of Science

Okinawa Institute of Science and Technology Graduate University

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Universität Zürich

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3