Analysing biodiversity observation data collected in continuous time: Should we use discrete‐ or continuous‐time occupancy models?

Author:

Pautrel Léa12ORCID,Moulherat Sylvain1ORCID,Gimenez Olivier2ORCID,Etienne Marie‐Pierre3ORCID

Affiliation:

1. OïkoLab Sorèze France

2. CEFE, University of Montpellier, CNRS, EPHE, IRD Montpellier France

3. IRMAR, Institut Agro Rennes Angers, Rennes University Rennes France

Abstract

Abstract Biodiversity monitoring is undergoing a revolution, with fauna observation data being increasingly gathered continuously over extended periods, through sensors like camera traps and acoustic recorders, or via opportunistic observations. These data are often analysed with discrete‐time ecological models, requiring the transformation of continuously collected data into arbitrarily chosen, non‐independent discrete‐time intervals. To overcome this issue, ecologists are increasingly turning to the existing continuous‐time models in the literature. Closer to the real detection process, they are lesser known than discrete‐time models, not always easily accessible and can be more complex. Focusing on occupancy models, a type of species distribution models, we asked ourselves: Should we dedicate time and effort to learning and using these continuous‐time models, or can we go on using discrete‐time models? We conducted a comparative simulation study using data generated within a continuous‐time framework. We assessed the performance of five static occupancy models with varying detection processes: discrete detection/non‐detection process, discrete count process, continuous‐time Poisson process and two types of modulated Poisson processes. Our goal was to assess their abilities to estimate occupancy probability with continuously collected data. We applied all models to empirical lynx data as an illustrative example. In scenarios with easily detectable animals, we found that all models accurately estimated occupancy. All models reached their limits with highly elusive animals. Variation in discretisation intervals had minimal impact on the discrete models' capacity to estimate occupancy accurately. Our study underscores that opting for continuous‐time models with an increased number of parameters, aiming to get closer to the sensor detection process, may not offer substantial advantages over simpler models when the sole aim is to accurately estimate occupancy. Model choice can thus be driven by practical considerations such as data availability or implementation time. However, occupancy models can encompass goals beyond estimating occupancy probability. Continuous‐time models, particularly those considering temporal variations in detection, can offer valuable insights into specific species behaviour and broader ecological inquiries. We hope that our findings offer valuable guidance for researchers and practitioners working with continuously collected data in wildlife monitoring and modelling.

Funder

Association Nationale de la Recherche et de la Technologie

Agence Nationale de la Recherche

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3