Flying high: Sampling savanna vegetation with UAV‐lidar

Author:

Boucher Peter B.1ORCID,Hockridge Evan G.1ORCID,Singh Jenia1ORCID,Davies Andrew B.1ORCID

Affiliation:

1. Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA

Abstract

Abstract The flexibility of UAV‐lidar remote sensing offers a myriad of new opportunities for savanna ecology, enabling researchers to measure vegetation structure at a variety of temporal and spatial scales. However, this flexibility also increases the number of customizable variables, such as flight altitude, pattern, and sensor parameters, that, when adjusted, can impact data quality as well as the applicability of a dataset to a specific research interest. To better understand the impacts that UAV flight patterns and sensor parameters have on vegetation metrics, we compared 7 lidar point clouds collected with a Riegl VUX − 1LR over a 300 × 300 m area in the Kruger National Park, South Africa. We varied the altitude (60 m above ground, 100 m, 180 m, and 300 m) and sampling pattern (slowing the flight speed, increasing the overlap between flightlines and flying a crosshatch pattern), and compared a variety of vertical vegetation metrics related to height and fractional cover. Comparing vegetation metrics from acquisitions with different flight patterns and sensor parameters, we found that both flight altitude and pattern had significant impacts on derived structure metrics, with variation in altitude causing the largest impacts. Flying higher resulted in lower point cloud heights, leading to a consistent downward trend in percentile height metrics and fractional cover. The magnitude and direction of these trends also varied depending on the vegetation type sampled (trees, shrubs or grasses), showing that the structure and composition of savanna vegetation can interact with the lidar signal and alter derived metrics. While there were statistically significant differences in metrics among acquisitions, the average differences were often on the order of a few centimetres or less, which shows great promise for future comparison studies. We discuss how these results apply in practice, explaining the potential trade‐offs of flying at higher altitudes and with alternate patterns. We highlight how flight and sensor parameters can be geared toward specific ecological applications and vegetation types, and we explore future opportunities for optimizing UAV‐lidar sampling designs in savannas.

Funder

Harvard University

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3