prioriactions: Multi‐action management planning in R

Author:

Salgado‐Rojas José12ORCID,Hermoso Virgilio134ORCID,Álvarez‐Miranda Eduardo567

Affiliation:

1. Forest Sciences Centre of Catalonia Solsona Spain

2. Department of Statistics and Operations Research Polytechnic University of Catalonia Barcelona Spain

3. Estación Biológica de Doñana, CSIC Sevilla Spain

4. Australian Rivers Institute, Griffith University Brisbane Queensland Australia

5. School of Economics and Business Universidad de Talca Talca Chile

6. Instituto Sistemas Complejos de Ingeniería Santiago Chile

7. Instituto de Ecología y Biodiversidad Santiago Chile

Abstract

AbstractDesigning effective conservation strategies requires deciding not only where to locate conservation actions (i.e. which territorial units should be priortized), but also which type actions should be deployed. For most of conservation planning contexts, deciding where and what to do usually yields a complex and computationally challenging decision‐making setting. Although the resulting optimization problems have typically been tackled using heuristic approaches, recent advances in mixed integer programming (MIP) solver technology have turned MIP‐based approaches into a practical alternative for solving complex conservation planning problems.We introduce theRpackageprioriactions, which allows solving complex conservation planning problems comprising prioritization and action deployment decisions.prioriactionsfeatures a MIP approach that allows formulating and solving optimally (or nearly optimally) a wide class of conservation planning problems (characterized by different spatial and functional constraints and requirements). Furthermore, the package allows using a variety of commercial and open‐source exact solvers enhancing its usability as well as its practical effectiveness.Here, we present a comprehensive description of the main functions available inprioriactions. This package has a workflow of three straightforward steps: (a) validation of the input data, using theinputData()function that prepares input; (b) the creation of a prioritization model, using theproblem()function, allows the creation of two types of common models: theminimization of coststo achieve a recovery target andmaximizing the recovery benefitsgiven a limited budget; and (c) to solve of the model, using thesolve()function.Theprioriactionspackage provides a user‐friendly platform for addressing different multi‐actions management problems, allowing to identify more rigorously, transparently and in a reproducible way the spatial deployment of management actions.

Funder

Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3