Multi‐trait point pattern reconstruction of plant ecosystems

Author:

Wudel Chris1ORCID,Schlicht Robert1,Berger Uta1ORCID

Affiliation:

1. Chair of Forest Biometrics and Systems Analysis Technische Universität Dresden Tharandt Germany

Abstract

Abstract Plants interact locally in many ways and the processes involved (e.g. competition for resources, natural regeneration, mortality or subsequent succession) are complex. These processes give rise to characteristic spatial patterns that vary over time. The corresponding spatial data, that is the locations of individuals and their specific characteristics (e.g. trees of a certain species and their diameters), are known as point patterns, and their statistical analysis can be used to study the underlying processes and their changes due to environmental scenarios. A special application of point pattern analysis is their numerical reconstruction, which is classically used (a) to generate null models that can be contrasted with observed patterns and (b) to evaluate the information contained in observed data using various summary statistics. Sometimes, the reconstructed datasets are also used to initialise individual‐based or agent‐based plant models with realistic but artificially generated data in order to analyse or forecast the development of plant systems. Previous reconstruction methods of point patterns consider only one mark, or they consider several marks but neglect their correlations. We introduce a method that considers individual locations and two marks simultaneously (in our example information on tree species, and diameter at breast height). The method uses different summary statistics of the second‐order point pattern analysis, such as the pair correlation function and the mark correlation function. By successively modifying the reconstructed spatial pattern, the distance (also called energy), measured in terms of differences in the summary statistics between the generated pattern and the observed pattern, is minimised and a high statistical similarity is achieved. After testing the method on different datasets, the suitability of our method for reconstructing complex spatial forest stands, including the spatial relationships of all considered marks, is shown. The presented method is a powerful tool for generating point pattern data. With minor changes, it even enables the reconstruction of forest stands and plant systems larger than those used to collect the inventory data, and although we used two marks only to demonstrate the power of the method, it is easy to include more marks.

Funder

Bundesministerium für Ernährung und Landwirtschaft

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi‐trait point pattern reconstruction of plant ecosystems;Methods in Ecology and Evolution;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3