Macrophenological dynamics from citizen science plant occurrence data

Author:

Mora Karin123ORCID,Rzanny Michael4ORCID,Wäldchen Jana34ORCID,Feilhauer Hannes123ORCID,Kattenborn Teja5ORCID,Kraemer Guido12ORCID,Mäder Patrick367ORCID,Svidzinska Daria12ORCID,Wolf Sophie12ORCID,Mahecha Miguel D.1238ORCID

Affiliation:

1. Institute for Earth System Science & Remote Sensing Leipzig University Leipzig Germany

2. Remote Sensing Centre for Earth System Research Leipzig University Leipzig Germany

3. German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany

4. Max Planck Institute for Biogeochemistry Jena Germany

5. Department for Sensor‐Based Geoinformatics University of Freiburg Freiburg Germany

6. Data Intensive Systems and Visualisation Technische Universität Ilmenau Ilmenau Germany

7. Faculty of Biological Sciences Friedrich Schiller University Jena Germany

8. Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden/Leipzig) Leipzig Germany

Abstract

Abstract Phenological shifts across plant species is a powerful indicator to quantify the effects of climate change. Today, mobile applications with automated species identification open new possibilities for phenological monitoring across space and time. Here, we introduce an innovative spatio‐temporal machine learning methodology that harnesses such crowd‐sourced data to quantify phenological dynamics across taxa, space and time. Our algorithm links individual phenological responses across thousands of species and geographical locations, using a similarity measure. The analysis draws on nearly ten million plant observations collected through the AI‐based plant identification app Flora Incognita in Germany from 2018 to 2021. Our method quantifies changes in synchronisation across the annual cycle. During the growing season, synchronised behaviour can be encoded by a few characteristic macrophenological patterns. Nonlinear spatio‐temporal changes of these patterns can be efficiently quantified using a data compressibility measure. Outside the growing season, the phenological synchronisation diminishes introducing noise into the patterns. Despite biases and uncertainties associated with crowd‐sourced data, for example due to human data collection behaviour, our study demonstrates the feasibility of deriving meaningful indicators for monitoring plant macrophenology from individual plant observations. As crowd‐sourced databases continue to expand, our approach holds promise to study climate‐induced phenological shifts and feedback loops.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Deutsches Zentrum für Luft- und Raumfahrt

Volkswagen Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3