tdsa: An R package for time‐dependent sensitivity analysis

Author:

Ng Wee Hao1ORCID,Myers Christopher R.1,McArt Scott H.1,Ellner Stephen P.1ORCID

Affiliation:

1. Cornell University Ithaca New York USA

Abstract

Abstract Sensitivity analysis of ecological and epidemiological models is often used to identify the best targets of opportunity for control or management, for example, which subpopulations should be prioritised for vaccination or protection. However, effectiveness of a management action depends not just on which system component is targeted but also on when an action is taken. Traditional methods of model sensitivity analysis apply to time‐invariant parameter perturbations, which limits their ability to address questions about the timing of management interventions. A semianalytic method for performing time‐dependent sensitivity analysis (TDSA) has been recently introduced to address this need (Ng et al., in press). However, some of the steps typically require substantial time and effort. We have developed an R package, tdsa, that automates all steps required for TDSA by using numerical rather than analytic differentiation of model terms to evaluate the sensitivity equations. By avoiding analytic differentiation, the package substantially reduces user effort and risk of human error and increases the generality of TDSA by making it possible to analyse nonparametric or equation‐free models. The results of TDSA may be sensitive to assumptions of the system model. By reducing the effort needed to perform TDSA, the tdsa package facilitates comparison of results under different model assumptions, hence allowing for more robust conclusions. We illustrate this using an example involving the transmission of Morogoro virus in the Natal multimammate mouse, under different assumptions about how the contact rate depends on mouse population density. By automating most of the mathematical and programming steps of the semianalytical approach, the tdsa package makes TDSA accessible to a wide range of users with varying quantitative expertise.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. tdsa: An R package for time‐dependent sensitivity analysis;Methods in Ecology and Evolution;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3