3D photogrammetry and deep‐learning deliver accurate estimates of epibenthic biomass

Author:

Marlow Joseph1ORCID,Halpin John Edward1,Wilding Thomas Andrew1ORCID

Affiliation:

1. Scottish Association for Marine Science Oban UK

Abstract

Abstract Accurate biomass estimates are key to understanding a wide variety of ecological functions. In marine systems, epibenthic biomass estimates have traditionally relied on either destructive/extractive methods that are limited to horizontal soft‐sediment environments, or simplistic geometry‐based biomass conversions that are unsuitable for more complex morphologies. Consequently, there is a requirement for non‐destructive, higher‐accuracy methods that can be used in an array of environments, targeting more morphologically diverse taxa, and at ecological relevant scales. We used a combination of 3D photogrammetry, convolutional neural network (CNN) automated taxonomic identification, and taxa‐specific biovolume:biomass calibrations to test the viability of estimating biomass of three species of morphologically complex epibenthic taxa from in situ stereo 2D source imagery. Our trained CNN produced accurate and reliable annotations of our target taxa across a wide range of conditions. When incorporated into photogrammetric 3D models of underwater surveys, we were able to automatically isolate our three target taxa from their environment, producing biovolume measurements that had respective mean similarities of 99%, 102% and 120% of those obtained from human annotators. When combined with taxa‐specific biovolume:biomass calibration values, we produced biomass estimates of 88%, 125% and 133% mean similarity to that of the ‘true’ biomass of the respective taxa. Our methodology provides a highly reliable and efficient method for estimating epibenthic biomass of morphologically complex taxa using non‐destructive 2D imagery. This approach can be applied to a variety of environments and photo/video survey approaches (e.g. SCUBA, ROV, AUV) and is especially valuable in spatially extensive surveys where manual approaches are prohibitively time‐consuming.

Funder

Natural Environment Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3