BirdFlow: Learning seasonal bird movements from eBird data

Author:

Fuentes Miguel1ORCID,Van Doren Benjamin M.2ORCID,Fink Daniel2ORCID,Sheldon Daniel1ORCID

Affiliation:

1. Manning College of Information and Computer Sciences University of Massachusetts Amherst Amherst Massachusetts USA

2. Cornell Lab of Ornithology Cornell University Ithaca New York USA

Abstract

Abstract Large‐scale monitoring of seasonal animal movement is integral to science, conservation and outreach. However, gathering representative movement data across entire species ranges is frequently intractable. Citizen science databases collect millions of animal observations throughout the year, but it is challenging to infer individual movement behaviour solely from observational data. We present BirdFlow, a probabilistic modelling framework that draws on citizen science data from the eBird database to model the population flows of migratory birds. We apply the model to 11 species of North American birds, using GPS and satellite tracking data to tune and evaluate model performance. We show that BirdFlow models can accurately infer individual seasonal movement behaviour directly from eBird relative abundance estimates. Supplementing the model with a sample of tracking data from wild birds improves performance. Researchers can extract a number of behavioural inferences from model results, including migration routes, timing, connectivity and forecasts. The BirdFlow framework has the potential to advance migration ecology research, boost insights gained from direct tracking studies and serve a number of applied functions in conservation, disease surveillance, aviation and public outreach.

Funder

National Science Foundation of Sri Lanka

Leon Levy Foundation

Wolf Creek Charitable Foundation

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Reference58 articles.

1. Auer T. Fink D. &Strimas‐Mackey M.(2020).Ebirdst: Tools for loading plotting mapping and analysis of ebird status and trends data products. [R package version 0.2.0].https://cornelllabofornithology.github.io/ebirdst/

2. Babuschkin I. Baumli K. Bell A. Bhupatiraju S. Bruce J. Buchlovsky P. Budden D. Cai T. Clark A. Danihelka I. Fantacci C. Godwin J. Jones C. Hennigan T. Hessel M. Kapturowski S. Keck T. Kemaev I. King M. …Viola F.(2020).The DeepMind JAX ecosystem.http://github.com/deepmind

3. Migratory birds under threat

4. The grand challenges of migration ecology that radar aeroecology can help answer

5. Bierregaard R.(2019).Movebank: Osprey bierregaard north and south america. Retrieved fromhttps://www.movebank.org/cms/webapp?gwt_fragment=page=studies path=study8868155

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3