A synthesis of recent tools and perspectives in migratory connectivity studies

Author:

Gregory Killian A.ORCID,Francesiaz CharlotteORCID,Jiguet FrédéricORCID,Besnard AurélienORCID

Abstract

AbstractMigration movements connect breeding and non-breeding bird populations over the year. Such links, referred to as migratory connectivity, have important implications for migratory population dynamics as they dictate the consequences of localised events for the whole population network. This calls for concerted efforts to understand migration processes for large-scale conservation. Over the last 20 years, the toolbox to investigate connectivity patterns has expanded and studies now consider migratory connectivity over a broader range of species and contexts. Here, we summarise recent developments in analysing migratory connectivity, focusing on strategies and challenges to pooling various types of data to both optimise and broaden the scope of connectivity studies. We find that the different approaches used to investigate migratory connectivity still have complementary strengths and weaknesses, whether in terms of cost, spatial and temporal resolution, or challenges in obtaining large sample sizes or connectivity estimates. Certain recent developments offer particularly promising prospects: robust quantitative models for banding data, improved precision of geolocators and accessibility of telemetry tracking systems, and increasingly precise probabilistic assignments based on genomic markers or large-scale isoscapes. In parallel, studies have proposed various ways to combine the information of different datasets, from simply comparing the connectivity patterns they draw to formally integrating their analyses. Such data combinations have proven to be more accurate in estimating connectivity patterns, particularly for integrated approaches that offer promising flexibility. Given the diversity of available tools, future studies would benefit from a rigorous comparative evaluation of the different methodologies to guide data collection to complete migration atlases: where and when should data be collected during the migratory cycle to best describe connectivity patterns? Which data are most favourable to combine, and under what conditions? Are there methods for combining data that are better than others? Can combination methods be improved by adjusting the contribution of the various data in the models? How can we fully integrate connectivity with demographic and environmental data? Data integration shows strong potential to deepen our understanding of migratory connectivity as a dynamic ecological process, especially if the gaps can be bridged between connectivity, population and environmental models.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3