“Fractional replication” in single‐visit multi‐season occupancy models: Impacts of spatiotemporal autocorrelation on identifiability

Author:

Doser Jeffrey W.12ORCID,Stoudt Sara3ORCID

Affiliation:

1. Department of Integrative Biology Michigan State University East Lansing Michigan USA

2. Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA

3. Department of Mathematics Bucknell University Lewisburg Pennsylvania USA

Abstract

Abstract Understanding variation in species occupancy is an important task for conservation. When assessing occupancy patterns over multiple temporal seasons, it is recommended to visit at least a subset of sites multiple times within a season during a period of closure to account for observation biases. However, logistical constraints can inhibit re‐visitation of sites within a season, resulting in the use of single‐visit multi‐season occupancy models. Some have suggested that autocorrelation in space and/or time can provide “fractional replication” to separately estimate occupancy probability from detection probability, but the reliability of such approaches is not well understood. We perform an extensive simulation study to assess the reliability of estimates from single‐visit multi‐season occupancy models under differing amounts of spatial and temporal autocorrelation (“fractional replication”). We assess model performance under both correctly specified models and multiple forms of model mis‐specification, and compare estimates from single‐visit models to models with varying amounts of within‐season replication. We also assess the reliability of single‐visit models to estimate occupancy probability of ovenbirds (Seiurus aurocapilla) in New Hampshire, USA. We found less bias in estimates from single‐visit occupancy models with long‐range spatial autocorrelation in occupancy probability compared to short‐range spatial autocorrelation when the model is correctly specified. However, under certain forms of model mis‐specification, estimates from single‐visit multi‐season occupancy models were biased and had low coverage rates regardless of the characteristics of the “fractional replication”. In contrast, models with varying amounts of additional replication were robust to model mis‐specification. Our findings suggest that “fractional replication” cannot replace true replication in terms of occupancy probability identifiability and that researchers should consider the potential inaccuracies when using single‐visit multi‐season occupancy models. We show that a little true replication can go a long way with even 10% of sites being revisited within a season leading to reasonably robust estimates even in the presence of extreme model mis‐specifications. When possible, we recommend performing multiple within‐season visits to at least a subset of spatial locations or integrating single‐visit data with other data sources to mitigate reliance on parametric assumptions required for reliable inference in single‐visit multi‐season occupancy models.

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3