Effect of a portable light emitting diode device on wound healing in a rat model

Author:

Cha Han Gyu1ORCID,Hur Joon2,Pak Changsik John2,Hong Joon Pio2ORCID,Suh Hyunsuk Peter2

Affiliation:

1. Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon South Korea

2. Department of Plastic Surgery, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea

Abstract

AbstractLight‐emitting diode (LED) lights produce a variety of wavelengths that have demonstrable efficacy in therapeutic and aesthetic fields. However, a repetitive treatment regimen is required to produce treatment outcomes, which has created a need for portable LED devices. In this study, we aimed to develop a portable therapeutic LED device and investigate its healing effect on excisional wounds in a rat model. The 35 × 35 mm‐sized LED device was used on a total of 30 rats with full‐thickness wounds that were divided into two groups depending on radiation intensity (11.1 and 22.2 mW/cm2 group). LED irradiation was performed every 24 h for 30 min, over 14 days, in direct contact with the wound. Percentage wound closure was measured by photographic quantification and was assessed histologically using haematoxylin and eosin (H&E) and Masson's Trichrome staining, and immunohistochemistry for Vascular endothelial growth factor (VEGF) and CD31. Percentage wound closure was significantly higher in 22.2 mW/cm2 irradiated wounds than that in the control wounds on days 7 and 10. The area of collagen deposition was remarkably larger in 22.2 mW/cm2 irradiated wounds than that in the control, with more horizontally organized fibres. CD31 immunostaining confirmed a significant increase in the number of microvessels in 22.2 mW/cm2 irradiated wounds than that in the control wounds, although there was no difference in VEGF immunostaining. Our novel portable LED device accelerates wound healing in a rat model, raising the possibility that portable LED devices can combine convenience with accessibility to play an innovative role in wound dressing.

Publisher

Wiley

Subject

Dermatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3