The role of light emitting diode in wound healing: A systematic review of experimental studies

Author:

da Rocha Rebeca Barbosa1,Araújo Dakson Douglas1,Machado Fabrício dos Santos1,Cardoso Vinicius Saura2,Araújo Ana Jérsia1,Marinho‐Filho José Delano Barreto1ORCID

Affiliation:

1. Laboratório de Cultura de Células do Delta (LCCDelta) Universidade Federal do Delta do Parnaíba—UFDPar Parnaíba Piauí Brazil

2. Laboratório de Estudos e Pesquisas em Sinais Biológicos (Biosignal) Universidade Federal do Delta do Parnaíba—UFDPar Parnaíba Piauí Brazil

Abstract

AbstractWounds represent a growing global issue demanding increased attention. To expedite wound healing, technologies are under development, and light emitting diode (LED) devices of varying wavelengths are being explored for their stimulating influence on the healing process. This article presents a systematic literature review aiming to compile, organize, and analyze the impacts of LED devices on wound healing. This review is registered on the PROSPERO platform [CRD42023403870]. Two blinded authors conducted searches in the Pubmed, Web of Science, Scopus, Embase, and ScienceDirect databases. In vitro and in vivo experimental studies assessing LED utilization in the wound healing process were included. The search yielded 1010 studies, of which 27 were included in the review. It was identified that LED stimulates different healing pathways, promoting enhanced cell proliferation and migration, angiogenesis stimulation, increased collagen deposition, and modulation of the inflammatory response. Thus, it can be concluded that the LED stimulates cellular and molecular processes contingent on the utilized parameters. The effects depend on the standards used. Cell migration and proliferation were better influenced by green and red LED. The extracellular matrix components and angiogenesis were regulated by all wavelengths and the modulation of inflammation was mediated by green, red, and infrared LEDs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3