Moisture‐modulated thermo‐physical analysis of sweetsop seed (Annona squamosa L.): A potential biofuel feedstock plant

Author:

Oloyede Christopher Tunji1ORCID,Jekayinfa Simeon Olatayo1ORCID,Adebonojo Samuel Adeyemi1ORCID,Uduaghan Alexander Adebola1ORCID,Adebayo Johnson Mobolaji1ORCID,Islam Md Rizwanul Fattah2ORCID

Affiliation:

1. Department of Agricultural Engineering, Faculty of Engineering and Technology Ladoke Akintola University of Technology Ogbomoso Nigeria

2. School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology University of Technology Syndney Ultimo NSW Australia

Abstract

AbstractSweetsop seed holds significant economic value as an oil seed, with ca. 25% oil content that finds applications as a feedstock for energy generation. The moisture‐modulated thermophysical properties of the seed were determined at varying moisture contents (8.0%–32.5%). Physical properties (length [L], width [W], thickness [T], arithmetic [Amd], and geometric mean diameters [Gmd], sphericity [Sty], surface area [SA], and bulk density [ρd]) were determined using standard methods while the thermal properties (specific heat capacity [SHC], thermal conductivity [Tcd], and thermal diffusivity [Tdf]) were analyzed using a TEMPOS thermal analyzer. The results showed that the seed L, W, T, Amd, and Gmd, Sty, SA, and ρd ranged from 13.22–14.95 mm, 7.32–7.95 mm, 5.25–5.35 mm, 8.60–8.75 mm, and 7.96–8.11 mm, 0.61–0.60, 196.72–205.28 mm2, and 210.00–270.00 kg m−3, respectively. The SHC, Tcd, and Tdf ranged from 0.14–0.52 J kg−1 K−1, 0.17–0.35 W m−1 K−1, and 0.10–0.20 m2 s−1, respectively. The ANOVA results indicated that the thermo‐physical properties studied were significantly (p ≤ 0.05) affected by moisture content. By utilizing the determined properties, engineers can develop efficient machines to harness the economic potential of sweetsop seed oil in various industries, including biofuel generation.Practical applicationsThe thermal and physical properties of sweetsop seed are needed by agricultural and mechanical engineers and food scientists to explore the potential application of the seed and the seed product, like oil for industrial and commercial purposes. Data obtained on the specific heat capacity of the seed would be valuable in designing of heating compartment of an oil expeller, thermal conductivity and diffusivity would be needed to design drying systems that balance efficiency and quality preservation, facilitate efficient removal of moisture from the seed while minimizing the risk of over‐drying or under‐drying. Thus, affects the design of the seed storage systems. Data on the seed axial dimensions, sphericity, mean diameters, surface area, and bulk density would be useful in the design and fabrication of agricultural equipment like sheller, grinder, packaging machines, discharge chute, aperture, and planter, to ensure proper seed placement, flow and to determine machine throughput capacity.

Publisher

Wiley

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3