Infrared‐aided hot‐air drying of coconut: Impact on drying kinetics and quality metrics

Author:

Pandiselvam R.12ORCID,Davison Sneha1,Manikantan M. R.1ORCID,Jeevarathinam G.3,Jacob Anjitha1,Ramesh S. V.1ORCID,Shameena Beegum P. P.1ORCID

Affiliation:

1. Physiology, Biochemistry and Post‐Harvest Technology Division ICAR – Central Plantation Crops Research Institute Kasaragod Kerala India

2. Chemical & Biochemical Processing Division (CBPD) Central Institute for Research on Cotton Technology (CIRCOT) Mumbai India

3. Department of Food Technology Hindusthan College of Engineering and Technology Coimbatore Tamil Nadu India

Abstract

AbstractThis study explored various drying techniques and temperatures to analyze their effects on the drying kinetics and quality of copra. The initial moisture content of coconut kernels was 50%–55% (w.b.), which decreased to 6%–8% (w.b.) as a result of the drying process. This study focuses on evaluating the individual and hybrid effects of infrared drying (IRD) and hot‐air drying (HAD) techniques to enhance the quality of copra. Three drying methods were used: IRD, HAD, and infrared‐assisted hot‐air drying (IRAHAD). Coconut pieces were subjected to different drying temperatures (50, 60, and 70°C) with a constant air speed of 2 m/s. Optimal results were achieved by employing the IRAHAD method at 60°C, preserving a crucial fat content of 68.4% essential for increased extraction of oil from copra and comparatively high drying rates. In particular, the drying rates in IRAHAD were twice as high as those in IRD and HAD. At a drying temperature of 60°C, the logarithmic model and the diffusion approximation model were deemed the best fit for HAD and IRAHAD, respectively.Practical applicationsThis study demonstrates the efficacy of infrared‐assisted hot‐air drying (IRAHAD) at 60°C in preserving copra's crucial fat content of 68.4% for optimal oil extraction. By implementing IRAHAD, producers can efficiently dry coconut kernels while maintaining quality, enhancing extraction yields, and improving overall profitability in the coconut processing industry.

Funder

Indian Council of Agricultural Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3