Enhancing quality assessment of live Pacific oysters (Crassostrea gigas) using flexible sensors real‐time monitoring physiological signals

Author:

Liu Pengfei1,Qu Xiaotian1,Glamuzina Branko2,Wang Xianping3,Zhang Xiaoshuan14ORCID

Affiliation:

1. Beijing Laboratory of Food Quality and Safety College of Engineering, China Agricultural University Beijing People's Republic of China

2. Department of Aquaculture University of Dubrovnik Dubrovnik Croatia

3. Rushan Dingcheng Fresh Seafood Processing Co., Ltd Weihai City People's Republic of China

4. Sanya Research Institute China Agricultural University Beijing People's Republic of China

Abstract

AbstractShell‐closing strength (SCS) is commonly used to assess oyster vigor and quality as an important physiological stress indicator of the oyster organism. In this study, a quality decision support system based on flexible wireless sensor network and web services was designed and developed to explore the application of SCS in the rapid assessment of vitality and quality. Based on physiological and environmental information collected by flexible wireless sensor networks, this study proposes a novel quantitative vitality assessment method to identify oyster life decline cycles and processes. Meanwhile, TVB‐N, TVC, and pH were selected as quality indicators, and a back‐propagation artificial neural network (BP‐ANN) was used to predict and evaluate oyster quality indicators. The results showed that the root mean square errors (RMSE) for TVB‐N, TVC, and pH were 0.4624, 0.8827, and 0.1941; the coefficients of determination (R2) were 0.8919, 0.8578, and 0.6249. Therefore, the rapid assessment of oyster vitality and quality based on a flexible wireless sensor network is a reliable and effective means.Practical applicationsThis study aims to explore the application of live oyster SCS for rapid quality evaluation. In this article, a quality decision support system based on a flexible wireless sensor network (WSN) and web services is developed to improve the quality and health of live oysters in the supply chain. The use of the multi‐sensor system enables the monitoring and collection of environmental and physiological signals of live oysters throughout the supply chain process. The evaluation of the quality of live oysters using physiological and environmental information collected by flexible wireless sensor networks is a reliable and efficient method. This will provide an effective and reliable quality evaluation and management for the oyster industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3