Harvest and decimation affect genetic drift and the effective population size in wild reindeer

Author:

Kvalnes Thomas12ORCID,Flagstad Øystein1ORCID,Våge Jørn3ORCID,Strand Olav1ORCID,Viljugrein Hildegunn3ORCID,Sæther Bernt‐Erik24ORCID

Affiliation:

1. Norwegian Institute for Nature Research (NINA) Trondheim Norway

2. Centre for Biodiversity Dynamics (CBD), Department of Biology Norwegian University of Science and Technology (NTNU) Trondheim Norway

3. Norwegian Veterinary Institute Ås Norway

4. Gjærevoll Center for Biodiversity Foresight Analyses Norwegian University of Science and Technology (NTNU) Trondheim Norway

Abstract

AbstractHarvesting and culling are methods used to monitor and manage wildlife diseases. An important consequence of these practices is a change in the genetic dynamics of affected populations that may threaten their long‐term viability. The effective population size (Ne) is a fundamental parameter for describing such changes as it determines the amount of genetic drift in a population. Here, we estimate Ne of a harvested wild reindeer population in Norway. Then we use simulations to investigate the genetic consequences of management efforts for handling a recent spread of chronic wasting disease, including increased adult male harvest and population decimation. The Ne/N ratio in this population was found to be 0.124 at the end of the study period, compared to 0.239 in the preceding 14 years period. The difference was caused by increased harvest rates with a high proportion of adult males (older than 2.5 years) being shot (15.2% in 2005–2018 and 44.8% in 2021). Increased harvest rates decreased Ne in the simulations, but less sex biased harvest strategies had a lower negative impact. For harvest strategies that yield stable population dynamics, shifting the harvest from calves to adult males and females increased Ne. Population decimation always resulted in decreased genetic variation in the population, with higher loss of heterozygosity and rare alleles with more severe decimation or longer periods of low population size. A very high proportion of males in the harvest had the most severe consequences for the loss of genetic variation. This study clearly shows how the effects of harvest strategies and changes in population size interact to determine the genetic drift of a managed population. The long‐term genetic viability of wildlife populations subject to a disease will also depend on population impacts of the disease and how these interact with management actions.

Funder

Norges Forskningsråd

Miljødirektoratet

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3