Novel mechanism of MicroRNA408 in callus formation from rice mature embryo

Author:

Huang Yizi12,Yue Erkui3ORCID,Lian Guiwei2,Lu Jinhan1,Ran Le1,Ma Shengyun2,Wang Kaiqiang1,Bai Yu2,Han Ning2,Bian Hongwu2ORCID,Guo Fu124ORCID

Affiliation:

1. Hainan Institute Zhejiang University, Yazhou Bay Science and Technology City Sanya 572025 China

2. Institute of Genetics and Regenerative Biology, College of Life Sciences Zhejiang University Hangzhou 310058 China

3. Hangzhou Academy of Agricultural Sciences Hangzhou 310024 China

4. Hainan Seed Industry Laboratory Yazhou Bay Science and Technology City Sanya 572025 China

Abstract

SUMMARYMature embryos are the main explants of tissue culture used in rice transgenic technology. However, the mechanism of mature embryo callus formation remains unclear. In this study, a microRNA‐mediated gene regulatory network of rice calli was established using degradome sequencing. We identified a microRNA, OsmiR408, that regulates the formation of the callus derived from the mature rice embryo. OsUCLACYANIN 30 (OsUCL 30), a target gene of OsmiR408, was the most abundant cleavage mRNA in rice callus. OsUCL17 was verified as a target gene of OsmiR408 using RNA ligase‐mediated 5′‐RACE. In analysis of the OsmiR408 promoter reporter line and pri‐miR408 transcript level, the promoter activity and transcript level of MIR408 were increased dramatically during callus formation. In phenotypic observations, OsmiR408 knockout caused severe defects in mature embryo callus formation, whereas OsmiR408 overexpression promoted callus formation. Transcriptome analysis demonstrated that OsUCLs and certain genes related to the plant hormone signal transduction and phenylpropanoid‐flavonoid biosynthesis pathway had different differential expression patterns between OsmiR408 knockout and overexpression calli. Thus, OsmiR408 may regulate callus formation mainly by affecting plant hormone signal transduction and phenylpropanoid‐flavonoid biosynthesis pathway. Our findings provide insight into OsmiR408/UCLs module function in callus formation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3