Community science enhances modelled bee distributions in a tropical Asian city

Author:

Lim Daniel Shan En1,Pang Sean Eng Howe2ORCID,Koay Tze Min3,Soh Zestin Wen Wen4ORCID,Ascher John S.2ORCID,Tan Eunice Jingmei12ORCID

Affiliation:

1. Division of Science Yale‐NUS College Singapore Singapore

2. Department of Biological Sciences National University of Singapore Singapore Singapore

3. School of Computing National University of Singapore Singapore Singapore

4. National Parks Board Singapore Botanic Gardens Singapore Singapore

Abstract

AbstractBees and the ecosystem services they provide are vital to urban ecosystems, but little is understood about their distributions, particularly in the Asian tropics. This is largely due to taxonomic impediments and limited inventorying, monitoring, and digitization of occurrence records. While expert collections (EC) are demonstrably insufficient by themselves as a data source to model and understand bee distributions, the boom of community science (CS) in urban areas provides an untapped opportunity to learn about bee distributions within our cities. We used CS observations in combination with EC observations to model the distribution of bees in Singapore, a small tropical city‐state in Southeast Asia. To address the restricted spatial context, we performed multiple bias corrections and show that species distribution models performed well when estimating the distribution of habitat specialists with distinct range limits detectable within Singapore. We successfully modelled 37 bee species, where model statistics improved for 23 species upon the incorporation of CS observations. Nine species had insufficient EC observations to obtain acceptable models, but could be modelled with the incorporation of CS observations. This is the first study to combine both EC and CS observations to map and model the occurrences of tropical Asian bee species for a highly urbanized region at such fine resolution. Our results suggest that urban landscapes with impervious surfaces and higher temperatures are less suitable for bee species, and such findings can be used to advise the management of urban landscapes to optimize the diversity of bee pollinators and other organisms.

Funder

National Research Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3