Spatial optimization of industrial symbiosis for heat supply of agricultural greenhouses

Author:

Rezaei Farzaneh1,Burg Vanessa2,Pfister Stephan2,Hellweg Stefanie2,Roshandel Ramin1ORCID

Affiliation:

1. Department of Energy Engineering Sharif University of Technology Tehran Iran

2. Institute of Environmental Engineering ETH Zürich Zürich Switzerland

Abstract

AbstractDespite the many benefits of greenhouses, it is challenging to meet their heating demand, as greenhouses belong to the most energy‐intensive production systems in the agriculture sector. Industrial symbiosis can bring an effective solution by utilizing waste heat from other industries to meet the greenhouse heat demand. This study proposes an optimization framework by which optimum symbiotic relationships can be identified. For this aim, the spatial analysis is integrated into an optimization model, in which geographical, technical, and economic parameters are considered simultaneously to identify the optimal location for developing new agricultural greenhouses. The objective function is to minimize the heating costs, that is, the investment cost of piping and electricity cost for pumping heat‐carrying fluid from supplier to demand. The model is applied to the case study of Switzerland, and currently existing municipal solid waste incinerators, cement production plants, and biogas plants are considered potential waste heat sources. Results show that the import of tomato, cucumber, and lettuce to Switzerland can theoretically be replaced by vegetable production in new waste‐heat supplied greenhouses (zero import scenarios). Accounting for the economy of scale for pipeline investment costs leads to selecting large‐scale greenhouses with a cost reduction of 37%. The optimization results suggest that 10% of the greenhouses needed to satisfy the total domestic demand for lettuce, tomato, and cucumber could be placed on a suitable land plot in the direct vicinity of a waste heat source, with low costs of waste heat supply.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3