Artificial intelligence for classification and regression tree based feature selection method for network intrusion detection system in various telecommunication technologies
Author:
Affiliation:
1. Computer Science & Engineering Birla Institute of Technology, Mesra Ranchi Jharkhand India
2. Department of Computer Science & Engineering Birla Institute of Technology, Mesra Ranchi Jharkhand India
Publisher
Wiley
Subject
Artificial Intelligence,Computational Mathematics
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1111/coin.12500
Reference42 articles.
1. ThanhVN ThinhTN.An anomaly‐based network intrusion detection system using deep learning. Proceedings of the International Conference on System Science and Engineering (ICSSE); 2017:210‐214; IEEE.
2. Intrusion detection by machine learning: A review
3. A survey of feature selection techniques in intrusion detection system: a soft computing perspective, progress in computing;Varma P;Anal Netw,2018
4. A Survey and Taxonomy of Classifiers of Intrusion Detection Systems
5. A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimizing machine learning for agricultural productivity: A novel approach with RScv and remote sensing data over Europe;Agricultural Systems;2024-06
2. Retraction: NeerajKumar, UpendraKumar. Artificial intelligence for classification and regression tree based feature selection method for network intrusion detection system in various telecommunication technologies. Comput Intell40: e12500, 2024 (10.1111/coin.12500);Computational Intelligence;2024-06
3. A Survey of Artificial Intellegence Techniques to Detect Intrusion Attack in Communication Network;2023 1st International Conference on Cognitive Computing and Engineering Education (ICCCEE);2023-04-27
4. Towards Data-Driven Fault Diagnostics Framework for SMPS-AEC Using Supervised Learning Algorithms;Electronics;2022-08-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3