Affiliation:
1. College of Animal Science and Technology Northwest A&F University Xianyang Shaanxi China
Abstract
AbstractAeromonas hydrophila and A. veronii are widespread and important critical pathogenic bacteria in the aquaculture industry and cause severe economic damage. At present, magnolol has been proved to be a broad‐spectrum antibacterial activity, such as A. hydrophila, Staphylococcus aureus and Streptococcus mutans. In order to explore the cause of in vivo disease resistance of magnolol and promote its safe application in aquaculture, the pathological detection and changes in immune indicators of fish after feeding with magnolol were conducted in this paper. Results showed that the diets supplemented with magnolol (3 g magnolol/kg commercial feed) significantly increase the expression level of anti‐inflammatory cytokines (IL‐10, TGF‐β and IL‐4) in the liver of goldfish (p < .05). Additionally, the expression levels of proinflammatory cytokines (IL‐1β, IL‐8 and IFN‐γ) did not increase significantly. Subsequently, this study investigated the resistance of goldfish to A. hydrophila and A. veronii infection after feeding with magnolol. The results showed that the survival rates of treatment groups fed 3 g magnolol/kg commercial feed daily increased by 23.1% and 38.5% after 10 days post A. hydrophila and A. veronii (p = .0351) infection, respectively. Meanwhile, growth performance (body weight and length), major internal organs (liver, spleen, kidney and intestine) and the serum biochemistry indicators (ATL and AST) all exhibited no significant adverse effects after the goldfish fed with magnolol for 30 days. TP showed an increasing concentration in the treatment group (p < .05). Results of the mRNA expression of stress response indicated that the expression level of cyp1a and hsp70 was significantly down‐regulated after a 30‐day treatment (p < .05), and the two genes recovered to the similar level as the control group after a commercial feed diet. In brief, the diets supplemented with magnolol protected the host from the excessive immune response caused by A. hydrophila and A. veronii via enhancing its anti‐inflammatory capacity and had no adverse effects with feeding.
Funder
National Natural Science Foundation of China
Subject
Veterinary (miscellaneous),Aquatic Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献