Remote sensing‐based geostatistical hot spot analysis of Urban Heat Islands in Dhaka, Bangladesh

Author:

Hussain Nur1ORCID,Ahmed S.M. Shahriar2ORCID,Shumi Amena Muzaffar3

Affiliation:

1. School of Earth, Environment & Society McMaster University Hamilton Canada

2. Department of Geography and Environment Jahangirnagar University Dhaka Bangladesh

3. Faculty of Agricultural Sciences University of Hohenheim Stuttgart Germany

Abstract

Urban Heat Island (UHI) refers to a phenomenon whereby urban areas experience higher temperatures compared to the surrounding areas. Remote sensing‐based Land Surface Temperature (LST) measurements can be utilized to measure UHI. This study emphasized on geostatistical remote sensing‐based hot spot analysis () of UHI in Dhaka, Bangladesh as a way of examining the influences of Land Use Land Cover (LULC) on UHI from 1991 to 2015. Landsat 5 and 7 satellite‐based remote sensing indices were used to explore LULC, UHI and environmental footprints during the study period. The Urban Compactness Ratio (CoR) was used to calculate the urban form and augmented characteristics. The Surface Urban Heat Island (SUHI) intensity (ΔT) was also used to explore the effects of UHI on the surrounding marginal area. Based on our investigations into LULC, we discovered that around 71.34 per cent of water bodies and 71.82 percent of vegetation cover decreased from 1991 to 2015 in Dhaka city. Contrastingly, according to CoR readings, 174.13 km2 of urban areas expanded by 249.77 per cent. Our hot spot analysis also revealed that there was a 93.73 per cent increase in hot concentration zones. Furthermore, the average temperature of the study area had increased by 3.26°C. We hope that the methods and results of this study can contribute to further research on urban climate.

Publisher

Wiley

Subject

Earth-Surface Processes,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3