Spatiotemporal Analysis of Urban Heat Islands and Vegetation Cover Using Emerging Hotspot Analysis in a Humid Subtropical Climate

Author:

Ghanghermeh Abdolazim1ORCID,Roshan Gholamreza1ORCID,Asadi Kousar1,Attia Shady2ORCID

Affiliation:

1. Department of Geography, Golestan University, Gorgan 49138-15759, Iran

2. Sustainable Building Design Lab, Department UEE, Faculty of Applied Science, Liege University, 4000 Liège, Belgium

Abstract

Research on the temporal and spatial changes of the urban heat island effect can help us better understand how urbanization, climate change, and the environment are interconnected. This study uses a spatiotemporal analysis method that couples the Emerging Hot Spot Analysis (EHSA) technique with the Mann–Kendall technique. The method is applied to determine the intensity of the heat island effect in humid subtropical climates over time and space. The data used in this research include thermal bands, red band (RED) and near-infrared band (NIR), and Landsat 7 and 8 satellites, which were selected from 2000 to 2022 for the city of Sari, an Iranian city on the Caspian Sea. Pre-processed spectral bands from the ‘Google Earth Engine’ database were used to estimate the land surface temperature. The land surface temperature difference between the urban environment and the outer buffer (1500 m) was modeled and simulated. The results of this paper show the accuracy and novelty of using Emerging Hotspot Analysis to evaluate the effect of vegetation cover on the urban heat island intensity. Based on the Normalized Difference Vegetation Index (NDVI), the city’s land surface temperature increased by approximately 0.30 °C between 2011 and 2022 compared to 2001 to 2010. However, the intensity of the urban heat island decreased during the study period, with r = −0.42, so an average −0.031 °C/decade decrease has been experienced. The methodology can be transferred to other cities to evaluate the role of urban green spaces in reducing heat stress and to estimate the heat budget based on historical observations.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3