Affiliation:
1. National Key Laboratory of Science and Technology on High‐strength Structural Materials Central South University Changsha China
2. Powder Metallurgy Research Institute Central South University Changsha China
3. Hunan Key Laboratory of Applied Environmental Photocatalysis Changsha University Changsha China
Abstract
AbstractThe interaction and infiltration behavior between typical calcium–ferrum–alumina–silicate (CFAS) and Yb4Hf3O12 ceramics at 1300, 1400, and 1500°C for different duration times were investigated. At 1300°C, the CFAS melt first crystallized and then generated massive anorthite with high‐melting point, reducing the wettability of CFAS melt and physically blocking CFAS penetration paths. As the temperature increased to 1400°C and 1500°C, the wettability of the molten CFAS correspondingly increases. A continuous reaction layer, composed of apatite, fluorite, and garnet, was formed over Yb4Hf3O12 ceramic due to the penetration of CFAS melt. Furthermore, the infiltration rate of CFAS decreases with increasing corrosion time because of the barrier effect primarily derived from the as‐mentioned continuous reaction layer.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献