Hotter drought and trade‐off between fast and slow growth strategies as major drivers of tree‐ring growth variability of global conifers

Author:

Wang Xuemei12,Wang Xiangping12ORCID

Affiliation:

1. State Key Laboratory of Efficient Production of Forest Resources Beijing Forestry University Beijing China

2. School of Ecology and Nature Conservation Beijing Forestry University Beijing China

Abstract

Abstract Temporal growth variability is an important indicator of ecosystem function under climate change. However, we still lack a unified understanding of how climate conditions, climate change (trends and variability), nitrogen (N) deposition, functional traits and stand factors together affect radial growth variability. Using global conifer tree‐ring records (123 species from 1780 sites) during 1970–2010 to calculate growth variability, we assessed how abiotic and stand factors affect growth variability directly and indirectly via functional traits with boosted regression tree and structural equation models, and examined the differences among continents (North America, Asia and Europe). We found: (a) growth variability was mainly affected by warm‐induced drought and increased at lower latitudes. Climate warming in winter could decrease growth variability, but this effect is by far not enough to offset the threat of hotter drought; (b) there existed a trade‐off between fast‐ and slow‐growing (drought tolerance) strategies for global conifer species, and abiotic and stand factors affected growth variability via functional traits. Contrary to common conjecture, species with higher drought tolerance revealed higher growth variability due to their occupation of more xeric sites, and may also because higher investment in drought tolerance leads to less investment remaining for growth; (c) older trees revealed higher growth variability due to their more conservative growth strategy, while at large scales, taller trees showed lower growth variability due to occupying more productive sites; and (d) moderate N deposition could reduce growth variability by leading conifers to adopt a more fast‐growing strategy (e.g. in Asia), but long‐term and excessive N deposition led to increased growth variability (e.g. in North America and Europe). Synthesis. Our results suggest that coniferous forests in water‐limited regions should be more vulnerable to hotter drought, and the ‘fast–slow’ growth strategies may be key in regulating the effects of various abiotic and stand factors on ecosystem stability. Moreover, future hotter drought and N deposition will severely threaten conifer growth, especially for old trees and conifers at lower latitudes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3