Why are plant communities stable? Disentangling the role of dominance, asynchrony and averaging effect following realistic species loss scenario

Author:

Lisner Aleš1ORCID,Segrestin Jules1ORCID,Konečná Marie1ORCID,Blažek Petr1ORCID,Janíková Eva1ORCID,Applová Markéta1ORCID,Švancárová Tereza1ORCID,Lepš Jan12ORCID

Affiliation:

1. Department of Botany, Faculty of Science University of South Bohemia České Budějovice Czech Republic

2. Biology Center of the Czech Academy of Sciences Institute of Entomology České Budějovice Czech Republic

Abstract

Abstract A growing number of studies have demonstrated that biodiversity is a strong and positive predictor of ecosystem temporal stability by simultaneously affecting multiple underlying mechanisms of stability, that is dominance, asynchrony and averaging effects. However, to date, no study has disentangled the relative role of these key mechanisms of stability in biodiversity experiments. We created a species richness gradient by mimicking a loss of rare species and assessed the role of species richness on community stability and, more importantly, quantified the relative role of three stabilizing mechanisms, that is dominance (stabilization due to stable dominants compared to the rest of the species in the community), asynchrony (stabilization due to temporal asynchrony between species), and averaging effects (pure effect of diversity) on community stability across a species richness gradient. We found that extreme species loss negatively impacted community stability, but just three species were enough to stabilize biomass production to a level similar to highly diverse communities. However, the similar stability of communities resulted from differing contributions from each stabilizing mechanism, depending on the community diversity. Since less abundant species were more temporally variable, species loss stabilized the populations of the remaining species. The loss of rare and subordinate species reduced the dominance and averaging effects, but increased the asynchrony effect. Hence, the asynchrony effect played a major role in the stability of species poor communities, while the averaging effect drove most of the stability of species rich communities. Overall, dominance played only a minor role, accounting for 5%–15% of the stabilization, while asynchrony and averaging effects were dominating forces contributing to ~85%–95% of the total stabilization. Synthesis. This study highlights the importance of biodiversity and roles of dominant and rare species for long‐term community stability and, for the first time, disentangles relative roles of dominance effect, asynchrony and averaging effect on community stability in a real‐world biodiversity experiment.

Funder

Grantová Agentura České Republiky

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3