Developing crown width model for mixed forests using soil, climate and stand factors

Author:

Tian Dongyuan1ORCID,He Pei1,Jiang Lichun12,Gaire Damodar13ORCID

Affiliation:

1. Department of Forest Management, School of Forestry Northeast Forestry University Harbin China

2. Key Laboratory of Sustainable Forest Ecosystem Management‐Ministry of Education, School of Forestry Northeast Forestry University Harbin China

3. Institute of Forestry, Tribhuvan University Hetauda Nepal

Abstract

Abstract The tree crown is a useful measure of tree vigour and is highly relevant to a tree's environmental adaptability. Crown allometry depends on environmental and stand conditions. Several studies have focussed on the effects of climate change and competitive intensity on the crown, but the regulatory role of soil resources and diversity on crown allometry and carbon allocation has been neglected. Data from 20,994 trees in 232 mixed forests collected between 2011 and 2019 were located near four major mountain ranges in northeast China. The proposed crown width model includes the stand developmental stage, soil, climate, competition intensity, species mixture, species diversity, structural diversity and their interactions. We observed that the cross‐species allometric scaling exponent does not conform to the universal scaling law. Our results showed that crown width increased with increasing soil bulk density, quadratic mean diameter and coefficient of diameter variation but decreased with increasing de Martonne aridity index, basal area, Simpson index and species mixture. The interaction between quadratic mean diameter and soil bulk density had a significant negative effect on crown width. The influence of a particular factor within the interaction term on crown width was modulated by the gradients of other factors. Furthermore, soil bulk density contributed more to crown width modelling than the aridity index, and structural diversity had a greater effect on crown width than species diversity. Synthesis. Our results provide new insights into the environmental variability of crown allometry in mixed forests under global change, which is critical for improving regional and global estimates of forest biomass and carbon stocks.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3