The interplay between defaunation and phylogenetic diversity affects leaf damage by natural enemies in tropical plants

Author:

Emer Carine12ORCID,Villar Nacho23ORCID,Melo Natália2,Ziparro Valesca B.2,Nazareth Sergio2,Galetti Mauro24ORCID

Affiliation:

1. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rio de Janeiro Brazil

2. Center for Research on Biodiversity Dynamics and Climate Change, Department of Biodiversity São Paulo State University (UNESP) Rio Claro Brazil

3. Netherlands Institute of Ecology, NIOO‐KNAW Wageningen The Netherlands

4. Latin American and Caribbean Center (LACC) Florida International University (FIU) Miami Florida USA

Abstract

Abstract Natural enemies play an important role in controlling plant population growth and vegetation dynamics. Tropical rainforests host the greatest diversity of herbivores, from large mammalian ungulates to microscopic pathogens, generating and maintaining plant diversity. By feeding on the same resources, large mammalian herbivores may interfere with plant consumption and leaf damage by important enemy guilds such as invertebrate herbivores and pathogens, triggering indirect trophic cascades. However, the impact of local extinctions of large herbivores on plant–enemy interactions is relatively unknown. We experimentally tested the effects of defaunation of large mammalian herbivores (e.g. peccaries, tapirs and brocket deer; hereafter, large herbivores) on the leaf damage of 3350 understorey plants in tropical rainforests of Brazil. We examined leaf damage in 10,050 leaves from 333 morphospecies by assigning the area consumed or damaged by five guilds of insect herbivores and leaf pathogens within 86 paired open‐closed plots and investigating the joint effects of defaunation and plant phylogenetic diversity. Plants released from large herbivores had 9% less leaf damage; this difference was due to the lower leaf pathogens incidence (29%) rather than insect herbivory. Evolutionary distinctness was positively correlated with leaf damage in a similar way in all treatments, suggesting additive effects of defaunation and phylogenetic diversity. Total and pathogenic leaf damage (but not insect damage) decreased with plant richness across treatments, and large herbivores exclusion resulted in increased plant species richness. This suggests that large herbivores exclusion leads to a dilution of total and pathogens' leaf damage by increasing plant species richness. Our results suggest that indirect effects of large herbivores decrease the dilution potential of plant communities against pathogens and rather reinforce their top‐down impact on vegetation, demonstrating a previously overlooked cascading effect of large herbivore extinction on forest ecosystems. Synthesis: The extinction of large mammalian herbivores can lead to a decrease in pathogen‐driven leaf damage, a previously unknown indirect effect in forest ecosystems, which might have consequences for plant fitness and ultimately for plant diversity. Large herbivores and plant pathogens might have synergistic effects in regulating the diversity of plant communities in some of the most diverse ecosystems on Earth.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3