No evidence for fractal scaling in canopy surfaces across a diverse range of forest types

Author:

Fischer Fabian Jörg1ORCID,Jucker Tommaso1ORCID

Affiliation:

1. School of Biological Sciences University of Bristol Bristol UK

Abstract

Abstract Canopy structural complexity is a key emergent property of forest ecosystems that directly relates to their ability to store carbon, cycle water and nutrients, and provide habitat for biodiversity. However, we lack a general framework for quantifying the structural complexity of forest canopies, and it remains to be seen if there are simple rules that explain the huge variation in canopy structure that we observe across the world's forests. A leading candidate for characterizing differences in structural complexity among forest ecosystems are fractal scaling laws, or measures of statistical self‐similarity. If forest canopies were fractal in nature, their structural attributes could be distilled into a single coefficient—their fractal dimension—which could then be used to directly compare structural differences within and across biomes. To test this idea, we used airborne laser scanning (ALS) data acquired across nine landscapes in Australia that span a huge environmental gradient and include everything from dry shrublands, tropical savannas, dense rainforests, to 90 m tall Mountain Ash forests. Using the ALS data, we built high‐resolution 3D canopy height models of each landscape so that we could quantify how closely they followed fractal scaling laws, based on a comprehensive set of fractal dimension estimators. Across all ecosystem types, fractal scaling assumptions were consistently violated, with clear and systematic differences between real‐world forest canopies and simulated fractal surfaces. However, deviations from fractality did vary predictably among sites, with forests in less arid environments, dominated by tall trees with large crowns, exhibiting a higher degree of self‐similarity across scales. Synthesis: Our study conclusively shows that canopy surfaces are not fractal beyond the scale of individual tree crowns. Nevertheless, we still observed ecologically meaningful and generalisable patterns in forest structure across scales, which closely reflect biophysical and physiological constraints on tree size and architecture. These patterns point the way towards a more general framework for characterizing ecological complexity.

Funder

Leverhulme Trust

Natural Environment Research Council

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3