Functional trait variability supports the use of mean trait values and identifies resistance trade‐offs for marine macroalgae

Author:

Ryznar E. R.1ORCID,Smith L. L.1,Hà B. A.1,Grier S. R.1,Fong P.1

Affiliation:

1. Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California USA

Abstract

Abstract Trait‐based ecology (TBE) has proven useful in the terrestrial realm and beyond for collapsing ecological complexity into traits that can be compared and generalized across species and scales. However, TBE for marine macroalgae is still in its infancy, motivating research to build the foundation of macroalgal TBE by leveraging lessons learned from other systems. Our objectives were to evaluate the utility of mean trait values (MTVs) across species, to explore the potential for intraspecific trait variability, and to identify macroalgal ecological strategies by clustering species with similar traits and testing for bivariate relationships between traits. To accomplish this, we measured thallus toughness, a trait associated with resistance to herbivory, and tensile strength, a trait associated with resistance to physical disturbance, in eight tropical macroalgal species across up to seven sites where they were found around Moorea, French Polynesia. We found interspecific trait variation generally exceeded intraspecific variation across species. Furthermore, MTV within species varied across sites, suggesting future research should focus on whether these traits are influenced by site‐specific differences in biotic and abiotic drivers. Species grouped into three clusters representing different ecological strategies: species that were defended against herbivores but not strong, species that were strong but not defended and species that were neither. Intraspecific standardized major axis regressions revealed five species exhibited significant or marginally significant positive relationships between these two traits, suggesting trait syndromes within species. Only one species exhibited a significant intraspecific trade‐off, as indicated by a negative regression slope. Synthesis. Our results point to three key takeaways that should provide a foundation to rapidly advance development of TBE for macroalgae in the future. First, our evidence supports the use of MTVs for macroalgae. Second, we identified significant spatial variability in macroalgal traits that may indicate an ability to respond to shifting environmental drivers. Third, measuring even a few traits can be a powerful tool to identify different ecological strategies to resist disturbances such as herbivory and removal by wave action. We hope these novel findings motivate future research into a wider suite of macroalgal traits, functions and strategies to further develop trait‐based approaches for marine macroalgae.

Funder

National Science Foundation

Phycological Society of America

University of California, Los Angeles

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3