Crops grown in mixtures show niche partitioning in spatial water uptake

Author:

Schmutz Anja1ORCID,Schöb Christian12ORCID

Affiliation:

1. Institute of Agricultural Sciences ETH Zurich Zurich Switzerland

2. Área Biodiversidad y Conservación Universidad Rey Juan Carlos Madrid Spain

Abstract

Abstract More diverse plant communities are generally more productive than monocultures. This benefit of species diversity is supposed to stem from resource partitioning of species in mixtures where different species use the resources spatially, temporally, or chemically in distinct ways. With respect to water, the simultaneous cultivation of crops with distinct water uptake patterns might reduce niche overlaps and thus result in higher productivity. However, little is known about whether and how spatial water uptake patterns of crop species differ among different planting arrangements and whether these changes result in increased niche partitioning and explain overyielding in mixtures. Stable isotopes of water and a Bayesian model were used to investigate the spatial water uptake patterns of six different crop species and how these patterns change depending on the planting arrangement (monocultures vs mixtures). Niche overlaps and niche widths in spatial water uptake were compared among the different crop diversity levels and linked to productivity. Furthermore, spatial water uptake was related to competition intensity and overyielding in mixtures. We found evidence for increased niche partitioning in spatial water uptake, and therefore complementary spatial root distributions of crop species, and higher expected productivity in mixtures compared to expected productivity in monocultures both due to inherent species‐level differences in water uptake and plasticity in the water uptake pattern of species. We also found a significant relationship of competition and overyielding with observed patterns in spatial water uptake. These results suggest that competition was most intense in shallow soil layers and enhanced overyielding was related to a gradual increase of water uptake in deeper soil layers. Thus, overyielding might be related to a more complete spatial exploitation of available water sources. Synthesis. Differences in spatial water uptake and niche partitioning of intercropped species, driven most likely by a complementary spatial root distribution, might explain why mixtures outperform monocultures. These findings underpin the potential of intercropping systems for a more sustainable agriculture with a more efficient use of soil resources and hence reduced input demands.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3