Water use efficiency and climate legacies dominate beech growth at its rear edge

Author:

Olano J. M.1ORCID,Sangüesa‐Barreda G.1,García‐López M. A.1,García‐Hidalgo M.1,Rozas V.1,García‐Cervigón A. I.2ORCID,Delgado‐Huertas A.3,Hernández‐Alonso H.14

Affiliation:

1. iuFOR, EiFAB, Campus de Soria Universidad de Valladolid Soria Spain

2. Biodiversity and Conservation Area Rey Juan Carlos University Móstoles Spain

3. Instituto Andaluz de Ciencias de la Tierra (CSIC‐UGR) Armilla Spain

4. Area of Ecology, Faculty of Biology University of Salamanca Salamanca Spain

Abstract

Abstract Rear‐edge tree populations are experiencing a combination of higher temperatures and more intense droughts that might push individuals beyond their tolerance limits. This trend towards rising atmospheric [CO2] is concurrent with an increase in intrinsic water use efficiency (iWUE), which theoretically enhances photosynthesis and decrease evapotranspiration rates, consequently improving tree resistance to drought. However, it remains unclear whether iWUE is favouring tree growth under current climate conditions, particularly when climate and iWUE legacy effects are simultaneously considered. We evaluated this question with an extensive sampling along Iberian rear‐edge (dry) populations comprising four mountain ranges and two distinct altitudes. We simultaneously examined the effects of climate and iWUE on secondary growth using annually resolved basal area increments (BAIs) for the period 1901–2017. We used linear mixed models including second‐order autocorrelation and 1‐year legacy effects of iWUE and summer drought. BAI and iWUE increased across the studied period. iWUE increase was driven by changes in atmospheric CO2 concentration and water availability during the growing season. Climate and iWUE exerted direct and lagged effects on beech growth. Water availability during growing season was the main driver of tree growth, combining direct and indirect effects through its impact on iWUE. Legacy effects of water availability and iWUE were more important than growing season conditions. The net effect of iWUE shifted when lagged effects were considered, resulting in a net negative impact on tree growth. Synthesis: Our results reveal that climate and iWUE legacy effects must be considered to assess the net iWUE effect on secondary growth. Considering lagged effects, the current increase in iWUE is constraining tree growth. Modelling efforts of tree growth response to climate warming should include climate and iWUE legacy effects to adequately assess terrestrial ecosystem carbon balance.

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference96 articles.

1. Consequences of widespread tree mortality triggered by drought and temperature stress

2. Barton K. &Barton M. K.(2015).Package ‘MuMIn’. Version 1.18‐439.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3